Catalan numbers, binary trees, and pointed pseudotriangulations
نویسندگان
چکیده
We study connections among structures in commutative algebra, combinatorics, and discrete geometry, introducing an array of numbers, called Borel’s triangle, that arises in counting objects in each area. By defining natural combinatorial bijections between the sets, we prove that Borel’s triangle counts the Betti numbers of certain Borel-fixed ideals, the number of binary trees on a fixed number of vertices with a fixed number of “marked” leaves or branching nodes, and the number of pointed pseudotriangulations of a certain class of planar point configurations.
منابع مشابه
A Simple Bijection between Binary Trees and Colored Ternary Trees
In this short note, we first present a simple bijection between binary trees and colored ternary trees and then derive a new identity related to generalized Catalan numbers.
متن کاملExpansive Motions and the Polytope of Pointed Pseudo-Triangulations
We introduce the polytope of pointed pseudo-triangulations of a point set in the plane, defined as the polytope of infinitesimal expansive motions of the points subject to certain constraints on the increase of their distances. Its 1-skeleton is the graph whose vertices are the pointed pseudo-triangulations of the point set and whose edges are flips of interior pseudo-triangulation edges. For p...
متن کاملConvexity, Non–Crossing Tree Partitions and Independent Sets in Phylogenetic Trees
Non –crossing set partitions are counted by the Catalan numbers and have been extensively studied in mathematics. We introduce the concept of a non-crossing tree partition and then use generating functions to count the number non-crossing tree partitions in Ordered and Binary Phylogenetic trees. In addition, we explore the connection between convexity, tree partitions and independent sets. Last...
متن کاملNon-Crossing Partitions in Binary, Ordered and Motzkin Trees
Non-Crossing Tree partitions are newer mathematical objects that have recent applications in genetics and mathematical biology. We explore several interesting connections between these partitions and the more commonly studied non-crossing set partitions. While non-crossing set partitions are counted by the Catalan numbers, we prove that non-crossing tree partitions in Binary trees are counted b...
متن کاملCounting triangulations and pseudo-triangulations of wheels
Motivated by several open questions on triangulations and pseudotriangulations, we give closed form expressions for the number of triangulations and the number of minimum pseudo-triangulations of n points in wheel configurations, that is, with n − 1 in convex position. Although the numbers of triangulations and pseudotriangulations vary depending on the placement of the interior point, their di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 45 شماره
صفحات -
تاریخ انتشار 2015